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ABSTRACT

A multiport circuit level model is developed for an open-

caw”ty, quasioptical power combiner. The model is developed

using Hermite- Guaa8ian beam mode theory, the Lorentz reci-

procity theorem and determination of difiaction losses.

FILAMENTARY
ANTENNA

I. INTRODUCTION

Quasi-optical techniques are attractive means for combin-

ing power from numerous solid-stat e millimeter-wave sources.

Power combining is accomplished in free space through su-

perposition of the fields produced by individual radiators

which are either globally or locally phase locked. In this pa-

per we present results of a circuit modeling and simulation

st rat egy for quasioptical power combking cavities. Such cir-

cuit level modeling and simulation is necessary to obtain a

greater insight into the operation of quasioptical power com-

biners and their somewhat unpredictable locking behavior.

The eventual aim is to develop a computer assisted design

(CAD) strategy for quasioptical systems. The model is ver-

ified through 2 port measurements and field proiiling.

In [1] Mink studied an array of filamentary current sources

radiating into a piano-concave open resonator. This was

the first theoretical investigation of power combining using

a source array in a quasi-opticsl resonator. The results are

applicable to the design of resonant cavity quasi-optical com-

biners and were obtained by use of the Lorentz reciprocity y

theorem to find the coupling coefficients between the current

elements and the natural short -circuit modes of the cavity.

The mode coupling coefficients and the radiation resistance

were determined for equal and Gaussian weight ed sources

under the assumption that all modes resonated at a single

frequency and that the resonator Q was high. These assump-

tions are fully removed in this work.
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Figure 1: Cross-section of quasioptical resonator.

II. SOURCE ARRAY IMPEDANCE MATRIX

The open cavity power combiner configuration is shown

in Fig. 1 and consists of an array of current elements located

at z = d. The current elements represent small dipol[es which

are assumed to be driven by active devices. The resonator

provides a high Q impedance which allows the individual

elements to oscillate at specific frequencies. The oscillat-

ing elements are phase locked through the resonator mode

structure which accomplishes the power combining. Assum-

ing the paraxial condition holds the fields in the cavity form

a complete, ortho-normal system [3]

E&(z, y, z) = /_(l + U’)-l/’(l + V’)-’/’
. .

He~(/Ze/zz)He.( /ZV/VZ)
u

cq{-~[(~/~z)2+(V/Y.)’]

[=FJ kz + : (U(Z/ZJ2+ V(IJ/IL)2)

—()‘+i ‘m-l(u)-(n+i)tm-l(v)l} ‘1)
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For wave beams propagating in the +fi. direction, the H-

field is related to the E-field by

H~n = +
{

%’ x E;n (2)
P

where,
z

u=-’

z: = X2(1 + u~),

the mode parameters are found

and the following definition of the Hermite polynomials is

used:

He.(X) = (–1)’’exp(X2/2) & (exp(-X2/2)) . (3)

These polynomials form a complete set and satisfy the or-

thogonalit y condition

/+mHe.(X)Hem(X)w(X)dX =m!6,m& (4)
-00

where the weight function w(X) = exp(–X2/2), and C$m is

the Kronecker delta.

An impedance matrix was developed by applying the

Lorentz reciprocity theorem to the volume enclosed by two

infinite planar surfaces; S1, the perfectly conducting plane

reflector located at z = O, and S2, an infinite transverse

plane located outside the resonator at z > D and using a

unit test field incident from z > D.

A. Application of Lorsntz Reciprocity Theorem

The test field from z >> D (see Fig. 2) is

{

c,t(E~— Ej) ; O<z<ll

“’” =6X (Ex + b,, E:) ; Z > D ‘
(5)

and using the transmission and reflection coefficients at the

reflect or surfaces yields

c.tE; = T,tE; — c.t R,t Ei

and,

b,,E~ = R,tE.j – c,tT,,E: .

Solving for c,, and b,t

T,t

“t = 1 + R,&t
(6)

and,

b,, = ~ - ‘:t
1 + R,t#,f “

(7)
●

where $,t z E&/Ej,,t, and the notation E&t is used to

indicate Ej evaluated on the surface of the spherical reflec-

tor.

The fields, E’ and H2 are excited by an array of il. di-

rected current sources J2 as shown in Fig. 1 and consist of

a standing wave and a traveling wave components:

{

fmn(E;. – E:.) io~.z<d

E2=iix~ a~.(E~m -(1+ emn)E~n) ; d < z < D .
mn gm.-%k ;z>D

(8)

The reflector characteristics are again applied along with (8)

to find
1

‘m”=-*A. -1 (9)

and
9m.$m.L.

a~n =
T“

(lo)
m.

Now equating the modal fields at z = d we get

f = amn(l+ ~mn/(&n14mJ)mn
(1 - Tmn) “

(11)

Where the ratio T~. = E&/E~m is evaluated at {z, y, z} =

{0, O, d}. Near the surface z = O the phase fronts of E~m and

E~n are nearly planar so for fixed z, T~. is approximately

independent of x and y.

The reciprocity theorem is now applied over the volume

bounded by S = SI + S2 to find the relationship between J2

and g~. and so

2gm. =
–Tmn

/(
E~m – E:#x . J2dv.

1 + RmnAm v
(12)

This result relates the modal source fields to the current

of the array elements. The expression (12) assumes that

E = iixE and thus JZ = AxJ’. For a general J2 confined

to a transverse plane, an ~Y polarization term for E must

be included in (8) and (5). The reciprocity calculation then

proceeds as before,

z=0

Figure 2: Cross-Section of QuasiopticaJ Resonator Showing

Fields, E2, Established by Radiating Current Elements,

B. Dij%action and Conductor Losses

The diffraction losses are included in the model by in-

corporating them into the reflection coefficient, &n, of the

spherical reflector. The power loss per transit due to diffrac-

tion, ~n, is [2]

am. = 1 – Ixmxmlz = 1- ;R&(c, l)ll$~(c, 1) 2. (13)
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Where I&) is the prolate spheroidal radial wave function,

and c = a2k/b for reflectors having radius of curvature b and

WI aperture of dimension 2a. The fields are evaluated at

discrete points on the reflectors and Simpson’s rule is used

to perform the integration. This is the same method used

by Soohoo [4] except that it has been extended to include

rectangular apertures, and also allows for different z and y

focal lengths. Thus ineffective reflection coefficient

rmn= Ixmxnl%n (14)

is computed. In a simulation environment the speed of the

diffraction loss calculation is increased by modeling the res-

onator mode elect nc field transition gain, lx~xm ], using

lXmXnt = J(1 - ArnlO-B*cE) (1 - &lO-B-%) (15)

where the constants &, &, B~, Bn are determined numer-

ically, and C=,V= ka~,J2D, and a is the aperture half-width.

Conductor losses were determined by the usual surface resis-

t ante calculation. and included in l?~..

C. Impedance Matriz

The multi-port model is described by its z parameters such

that

V=ZI (16)

It is desirable to model the resonator and antenna array as a

linear multiport circuit for purposes of computer-aided quasi-

optical power combiner analysis and design. Each port of the

cuit corresponds to the terminals of a particular antenna

~ith the p th antenna located at {z, y, z} = {zp, yP, Zp}. For

this array, (12) takes the very simple form

Where E&n is E% evaluated at {z*, yq, ZQ}, and lg and

AXq are the terminal current and effective length of the qth

dipole respectively.

The driving point impedance of the pth dipole in the

presence of all other dipoles is found by use of a reaction

principle [6]

ZP = –~ /v JP-EzdV.
P

(18)

‘%4 =
(&741m + Tmn)Ayx’ ~ [(1+&n+m.)(l - ~A

This impedance is the contribution of the paraxial fields.

Nonparaxial fields are not important for determining the

se~-impedance of a radiating element but are important in

describing antenna-to-antenna coupling. This effect is incor-

porated by considering half-space ratiaion in the next sec-

tion.

D. Nonresonant Field Contribution

The cavity resonant impedance as derived in the previous

section describes the coupling bet ween an electric current

density and the cavity modal fields. In the derivation of

the traveling wavebeams, far field radiation was asrmmed as

well as paraxial propagation. In the absence of the curved

reflector, these fields would comprise radiating fields which

diverge from the z axis by a small angle. In general, a current

distribution located over a ground plane will produce some

nonparsxial radiation as well as some near field components

which have intensity that decreases faster than l/~. The

impedance contributions of these nonresonant fields must be

added to the impedance due to the resonant fields to deter-

mine the total impedance.

The impedance contribution of the nonresonant fields is

derived by assuming that the non-resonant field structure

near the plane z = d and close to the z axis is essentially

unchanged if the spherical reflector is removed. This assump-

tion is justifiable because much of the radiating nonparaxial

energy falls out side the spherical reflector aperture, slso most

of the nonparaxial energy that impinges on the spherical re-

flector diverges from the z axis after reflection and does not

return to the region of the source current. Also, the amount

of energy reflected back to the source due to the near field

terms is negligible because the reflectors are assumed to be

in each other’s far field.

If the spherical reflector is removed a half-space remains,

bounded by the perfectly conducting planar reflector. The

field components that comprised the cavity modal fields be-

come, in the half space, radiating paraxial wavebeams.

In order not to account for the paraxial fields twice the

impedance contribution of the quasioptic fields with &,n =

O must be subtracted horn (19) resulting in

/
%9 = ‘X>AX’z[(1h.2LJ

(Ej~= - E:J(E& - E:mn)] . (20)

Thus the circuit equation (16) becomes

v = ZI = (ZRESONANT + ZNON-RESONANT) 1 (21)

where the elements of Z~50NANT are z~ ~d the element,5 of

ZNON.RESONANT for now must be evaluated numericrdy using
the dyadic half-space Green’s function which represents all

the field components generated by an electric source current

density; traveling paraxial wavebearns , nonparaxhd fields,

and nonradiating fields.

III. COMPUTED RESULTS AND EXPERIMENT

Measurements were made using an electrically short in-

verted L antenna. The first step in verifying the impedance

matrix presented above is to identify the cavity modes. Figs.

3 and 4 are field profiels of two modes at their resonant fre-

quencies. These profiles indicate that Gauss-Hermite modes

are established and are highly regular. The slight asymme-

try is attributed to the offset of the exciting tmtemna. For

each longitudinal mode index, q, thetransverse electromag-

netic modes; TEMm, TEMIO, TEMO1, TEMzo, TEM02, and
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TEMII were observed. The response for higher transverse

mode numbers was very small due to diffraction losses. One-

port and t we-port measurements were made for each of these

modes for the q = 35 family and compare very well with sim-

ulated results as seen in Fig. 5. The importance of including

the non-partial fields is seen in Fig. 6.
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Figure 5: Measured and Simulated Values of IZlzl for: (a)

modes TEMOz, TEM1l, TEM20; and (b) modes TEMo1,

TEMIO.Harper and Row, 1982.

1.0[
%1

X-DISPLACEMENT

Figure 3: Measured Relative Field Strength for the TEM0,0,3s

Mode.
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Figure 4: Measured Relative Field Strength for the TEM1,0,35

Mode.
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Figure 6: Measured and Simulated Values of Izlzl: (a) with-

out considering non-partial modes; and (b) considering

non-paraxial modes.
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