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ABSTRACT

A multiport circuit level model is developed for an open-
cavity, quasioptical power combiner. The model is developed
using Hermite-Guassian beam mode theory, the Lorentz reci-
procity theorem and determination of diffraction losses.

I. INTRODUCTION

Quasi-optical techniques are attractive means for combin-
ing power from numerous solid-state millimeter-wave sources.
Power combining is accomplished in free space through su-
perposition of the fields produced by individual radiators
which are either globally or locally phase locked. In this pa-
per we present results of a circuit modeling and simulation
strategy for quasioptical power combining cavities. Such cir-
cuit level modeling and simulation is necessary to obtain a
greater insight into the operation of quasioptical power com-
biners and their somewhat unpredictable locking behavior.
The eventual aim is to develop a computer assisted design
(CAD) sirategy for quasioptical systems. The model is ver-
ified through 2 port measurements and field profiling.

In [1] Mink studied an array of filamentary current sources
radiating into a plano-concave open resonator. This was
the first theoretical investigation of power combining using
a source array in a quasi-optical resonator. The results are
applicable to the design of resonant cavity quasi-optical com-
biners and were obtained by use of the Lorentz reciprocity
theorem to find the coupling coeflicients between the current
elements and the natural short-circuit modes of the cavity.
The mode coupling coefficients and the radiation resistance
were determined for equal and Gaussian weighted sources
under the assumption that all modes resonated at a single
frequency and that the resonator Q was high. These assump-
tions are fully removed in this work.
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Figure 1: Cross-section of quasioptical resonator.

II. SOURCE ARRAY IMPEDANCE MATRIX

The open cavity power combiner configuration is shown
in Fig. 1 and consists of an array of current elements located
at z = d. The current elements represent small dipoles which
are assumed to be driven by active devices. The resonator
provides a high Q impedance which allows the individual
elements to oscillate at specific frequencies. The oscillat-
ing elements are phase locked through the resonator mode
structure which accomplishes the power combining. Assum-
ing the paraxial condition holds the fields in the cavity form
a complete, ortho-normal system (3]
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For wave beams propagating in the X&; direction, the H-
field is related to the E-field by

H:..=i\/§i- < B, @

where,
z

_ z
T kX2’ kY?
2= X147,  gi=TH140Y)

the mode parameters are found as[3]

2= /(R0 (2- 1)), ’7’:'/1;\](“”(2_%))

and the following definition of the Hermite polynomials is
used:

u v =

dn
— n 2 2
Hen(X) = (—1)"exp(X*/2)1m (exp(-X?/2)) . (3)
These polynomials form a complete set and satisfy the or-
thogonality condition

[ " Heu(X) Hem(X)w(X)dX = mlbmv2r  (4)

where the weight function w(X) = exp(—X?/2), and §,,, is
the Kronecker delta.

An impedance matrix was developed by applying the
Lorentz reciprocity theorem to the volume enclosed by two

infinite planar surfaces; Sy, the perfectly conducting plane
reflector located at z = 0, and Sz, an infinite transverse
plane located outside the resonator at z > D and using a
unit test field incident from z > D.

A. Application of Lorentz Reciprocity Theorem

The test field from z >> D (see Fig. 2) is

cu(Ez—Ef) ; 0<z<D

P = Bx { (BztbaEY) 3 25D O

and using the transmission and reflection coefficients at the
reflector surfaces yields

c:tE;g' = 'tE,—g - c‘tRntE;t

and,
b:t jg- = RJtE,—g - cltTlt ;t-

Solving for ¢,; and b,,

Tlt

= 1 + Raﬂ/’at (6)

Cat

and,

2
R T )
1/’.2 1 + th'ﬁlt
where ¥,; = E},,/Ep ,,, and the notation Eﬁ',, is used to
indicate EZ evaluated on the surface of the spherical reflec-
tor.

b't =
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The fields, E; and H; are excited by an array of dx di-
rected current sources J; as shown in Fig. 1 and consist of
a standing wave and a travelling wave components:

fon(EL, — EL.) ; 0€2<d
Ea=8xY 4 amn(E;, —(1+emn)B},) s d<2<D .
™\ Gmn By i 2>D

(8)
The reflector characteristics are again applied along with (8)
to find

1
Emn = —7——5——1 9
- ©
and

i (10)

Now equating the modal fields at z = d we get

(1 + Tm"/(ann¢mn))

mn = Gmn . 11
f a, (1 _ Tmn) ( )

Where the ratio Toun = E},/E,., is evaluated at {z,y,2} =
{0,0,d}. Near the surface z = 0 the phase fronts of E},, and
E_,. ate nearly planar so for fixed z, T, is approximately
independent of z and y.

The reciprocity theorem is now applied over the volume
bounded by S = S; + S, to find the relationship between J2
and gm, and so

- Tmn

__mr — EY i, -
1+Rvnn¢mn v 'mn FJmﬂ)ax szV

2gmu =

(12)

This result relates the modal source fields to the current
of the array elements. The expression (12) assumes that
E = 8, F and thus J2 = #éxJ;. For a general J; confined
to a transverse plane, an &y polarization term for £ must

be included in (8) and (5). The reciprocity calculation then
proceeds as before.
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Figure 2: Cross-Section of Quasioptical Resonator Showing
Fields, Ez, Established by Radiating Current Elements,

B. Diffraction and Conductor Losses

The diffraction losses are included in the model by in-
corporating them into the reflection coefficient, Ryp, of the
spherical reflector. The power loss per transit due to diffrac-
tion, apn, is [2]

2 2
Omp =1— 'Xan'z =1- FCR(()}L(‘:, I)R&,),(C, 1) - (13)



Where R&) is the prolate spheroidal radial wave function,
and ¢ = a?k/b for reflectors having radius of curvature b and
an aperture of dimension 2a. The fields are evaluated at
discrete points on the reflectors and Simpson’s rule is used
to perform the integration. This is the same method used
by Soohoo [4] except that it has been extended to include
rectangular apertures, and also allows for different = and y
focal lengths. Thus an effective reflection coefficient

rmn = lX'anlRmn (14)

is computed. In a simulation environment the speed of the
diffraction loss calculation is increased by modeling the res-
onator mode electric field transition gain, |XmXn|, using

XmXnl = /(1 — Aml0-Bmce) (1 - A,10-Bacs)  (15)

where the constants A,, A, Bm, B, are determined numer-
ically, and ¢, = ka3 /2D, and « is the aperture half-width,
Conductor losses were determined by the usual surface resis-
tance calculation. and included in T,,,.

C. Impedance Mairiz

The multi-port model is described by its z parameters such
that
V=2ZI (16)

It is desirable to model the resonator and antenna array as a
linear multiport circuit for purposes of computer-aided quasi-
optical power combiner analysis and design. Each port of the

cuit corresponds to the terminals of a particular antenna
with the p th antenna located at {2,y,z} = {2,,¥, 2,}. For
this array, (12) takes the very simple form

e

29mn = mZIAX( amn —

Eln)-  (17)
Where Ef, is EX, evaluated at {z,,y,,2,}, and I, and
AXj, are the terminal current and effective length of the qth
dipole respectively.

The driving point impedance of the pth dipole in the
presence of all other dipoles is found by use of a reaction
principle [6)

1
% =7 /v 3, EadV. (18)

_AX, AX (Rentbron + Tomn)
e = Z [(1 + Rmn"pmn)(l - ""l)
( 'pmn ,m‘n)( qmn q,mﬂ)] M (19)

This impedance is the contribution of the paraxial fields.
Nonparaxial fields are not important for determining the
self-impedance of a radiating element but are important in
describing antenna-to-antenna coupling. This effect is incor-
porated by considering half-space ratiaion in the next sec-
tion.

D. Nonresonant Field Contribution .
The cavity resonant impedance as derived in the previous

section describes the coupling between an eleciric current
density and the cavity modal fields. In the derivation of
the traveling wavebeams, far field radiation was assumed as
well as paraxial propagation. In the absence of the curved
reflector, these fields would comprise radiating fields which
diverge from the z axis by a small angle. In general, a current
distribution located over a ground plane will produce some
nonparaxial radiation as well as some near field components
which have intensity that decreases faster than 1/r. The
impedance contributions of these nonresonant fields must be
added to the impedance due to the resonant fields to deter-
mine the total impedance.

The impedance contribution of the nonresonant fields is
derived by assuming that the non-resonant field structure
near the plane z = d and close to the z axis is essentially
unchanged if the spherical reflector is removed. This assump-
tion is justifiable because much of the radiating nonparaxial
energy falls outside the spherical reflector aperture, also most
of the nonparaxial energy that impinges on the spherical re-
flector diverges from the z axis after reflection and does not
return to the region of the source current. Also, the amount
of energy reflected back to the source due to the near field
terms is negligible because the reflectors are assumed to be
in each other’s far field.

If the spherical reflector is removed a half-space remains,
bounded by the perfectly conducting planar reflector. The
field components that comprised the cavity modal fields be-
come, in the half space, radiating paraxial wavebeams.

In order not to account for the paraxial fields twice the
impedance contribution of the quasioptic fields with R,n
0 must be subtracted from (19) resulting in

s _ A% AX"Z[ -
= (TF Bonnd)

By ) (B g

— E},..)]. (20)
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Thus the circuit equation (16) becomes

V = Z1 = (Znssonant + ZNON.RESONANT) I (21)

where the elements of ZrgsonanT are z,. and the elements of
ZNON-RESONANT for now must be eva.lua.ted numerically using
the dyadic half-space Green’s function which represents all
the field components generated by an electric source current
density; traveling paraxial wavebeams , nonparaxial fields,
and nonradiating fields.

I11. CoMPUTED RESULTS AND EXPERIMENT

Measurements were made using an electrically short in-
verted L antenna. The first step in verifying the impedance
matrix presented above is to identify the cavity modes. Figs.
3 and 4 are field profiels of two modes at their resonant fre-
quencies. These profiles indicate that Gauss-Hermite modes
are established and are highly regular. The slight asymme-
try is attributed to the offsct of the exciting antenna. For
each longitudinal mode index, g, the transverse electromag-
netic modes; TEMog, TEM;4, TEMy;, TEMaq, TEMy;, and
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TEMjy; were observed. The response for higher transverse
mode numbers was very small due to diffraction losses. One-
port and two-port measurements were made for each of these
modes for the g = 35 family and compare very well with sim-
ulated results as seen in Fig. 5. The importance of including
the non-paraxial fields is seen in Fig. 6.
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Figure 3: Measured Relative Field Strength for the TEMg 0,35
Mode.
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Figure 4: Measured Relative Field Strength for the TEM, o35
Mode.
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Figure 5: Measured and Simulated Values of |z1,| for: (a)
modes TEMoz, TEM]], TEMzo; and (b) modes TEMol,
TEM;o.
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Figure 6: Measured and Simulated Values of |z1,]: (a) with-
out considering non-paraxial modes; and (b) considering
non-paraxial modes.



